并不神秘的非欧几何,它究竟讲的是什么?五分钟带你搞懂
2023/3/23 10:09:23 阅读:264 发布者:
欧氏几何是人类创立的第一个完整的严密的(相对而言)科学体系。它于公元前三世纪由古希腊数学家欧几里得完成,欧洲数学2000年发展史,几乎有四分之三的时间里欧氏几何一统天下,对科学和哲学的影响极其深远。直到魏尔斯特拉斯发起的分析算术化运动使代数从欧氏几何中完全脱离以及非欧几何的诞生才结束了欧氏几何的统治地位。
其中,非欧几何的诞生影响着现代自然科学、现代数学和数学哲学的发展,今天我们先化繁为简,普及欧式几何和非欧几何的主要区别。
1、欧氏几何的几何结构是平坦的空间结构背景下考察,而非欧几何关注弯曲空间下的几何结构。
2、欧式几何起源于公元前,而非欧几何是几何学发展到新的时代的产物,产生于19世纪20年代。
3、非欧几何产生于非欧空间,而非欧空间可以理解成扭曲了的欧式空间,它的坐标轴不再是直线,或者坐标轴之间并不正交(即不成90度)。而欧式几何的坐标轴是直线,坐标轴之间成90度。
4、非欧几何与欧氏几何最主要的区别在于公理体系中采用了不同的平行定理。
欧式几何提出平行公理又称“第五公设”,它的内容是:如果一条直线和两直线相交,所构成的两个同侧内角之和小两直角,那么两直线延长后必定在那两内角的一侧相交(把平行公理换成较通俗的表达形式,就是前面提到的:过已知直线外一点可以而且只能引一条和它平行的直线)。
非欧几何认为第五公设是不可证明的,并由否定第五公设的其他公理代替第五公设,即假定“过线外一点至少可作两条直线与已知直线平行”。由这条公理出发,不改变欧几何的其他公理,通过逻辑推理,形成了不同于欧氏几何但又能自圆其说的完整而严密的几何体系。
另,欧式几何与非欧几何的适用范围也不一样。
欧氏几何主要研究平面结构的几何及立体几何,非欧几何是在一个不规则曲面上进行研究;欧式几何可以用于研究平面上的几何,即平面几何;研究三维空间的欧几里得几何,通常叫做立体几何。非欧几何适用于抽象空间的研究,即更一般的空间形式,使几何的发展进入了一个以抽象为特征的崭新阶段。非欧几何学还应用在爱因斯坦发展的广义相对论。
欧氏几何第五公设问题掀起的风波
欧几里得的《几何原本》标志着非欧几何的诞生,在《几何原本》里,欧几里得给出了 23 条定义、5条公理、5条公设,由此推证出48个命题。公理是指在任何数学学科里都适用的不需要证明的基本原理,公设则是几何学里的不需要证明的基本原理。近代数学则对此不再区分,都称“公理”。
这五大公设中,由于第五公设的内容和叙述比前四条公设复杂,所以引起后人的不断研究和探讨。
因为前四条公设都可以用《几何原本》中的其余公设、公理和推论证明,而人们始终相信欧氏几何是物理空间的正确理想化,所以众多数学家就尝试用前4个公设、5个公理以及由它们推证出的命题来证明第五公设,然而都没有成功。
第五公设难题:如果一条线段与两条直线相交,在某一侧的内角和小于两直角和,那么这两条直线在不断延伸后,会在内角和小于两直角和的一侧相交。
论证的不成功引发了数学家的疑义,数学界由此开始了对“第五公设难题”的讨论。
数学家还尝试用更简单、明畅的语言来叙述这条公设,从而更好地理解它并解决它,古希腊数学家普罗克鲁斯在公元5世纪就曾经试图重现陈述它,然而这些替代性陈述效果并不比原来的文字更好。直到 18 世纪普莱菲尔才算总结出一个比较简单的替代性公设:过已知直线外一点能且只能作一条直线与已知直线平行”。(中学教材就常用这个叙述形式来替代第五公设。)
从公元前三世纪一直到公元十八世纪期间,近 2000 年的时光过去,整个数学体系已经初具雏形。继解析几何和微积分诞生之后,新的数学分支纷纷脱颖而出。无数困难问题得以解决。许多数学家创立了复杂艰深的数学理论。但是人们在看上去极其简单的第五公设问题面前却仍然一筹莫展。法国数学家达朗贝尔在1759年无奈宣称:第五公设问题是“几何原理中的家丑”。
转自:“名校教研数学”微信公众号
如有侵权,请联系本站删除!