投稿问答最小化  关闭

万维书刊APP下载

综述:纤维和纺织品在集成光伏储能装置中的最新进展和挑战

2023/2/23 10:41:46  阅读:225 发布者:

研究背景

柔性微电子器件在微型化、便携式和集成化设备的发展方面出现了越来越多的趋势,如可穿戴电子设备,其要求是重量轻、尺寸小和柔软。传统的三维(3D) 和二维(2D) 电子装置由于其坚固性和大重量而无法有效地满足这些要求。调查表明,新的一维(1D)柔性和纤维基电子设备(FBEDs)系列包括电力储存、能量清除、植入式传感和柔性显示设备。然而由于它们的小半径、灵活性、低重量、编织能力和在纺织电子中的整合,开发和制造仍然是一个挑战。

研究成果

本文将详细回顾基材在电子设备中的重要性、内在属性要求、制造分类以及在能量收集、能量储存和其他柔性电子设备中的应用。对基于纤维和纺织品的电子装置的批量可扩展的制造、封装和测试进行了回顾,并提出了未来的研究思路,以加强这些基于纤维的电子装置的商业化。相关报道以Recent Advances and Challenges Toward Application of Fibers and Textiles in Integrated Photovoltaic Energy Storage Devices”为题发表在Nano-Micro Letters期刊上。里斯本新大学Amjid Rafque教授为文章的第一作者及通讯作者。

综述要点

1. 从制造、特性和设备性能的角度详细审查了基于纤维和纺织品的柔性电极的令人信服的方面。

2. 讨论了柔性太阳能电池和柔性储能装置中使用的纤维和纺织基电极的进展情况。

3. 强调了采用和开发纺织基柔性电极的前景和挑战。

图文导读

Fig. 1 a world Revenue ratio of flexible electronics. b Number of publications on fexible and wearable electronic devices during peri 20112021 period. c Evolution of fabrication of fexible electronics. d Comparative allocation of number of publications for different polymer and fexible substrates during 20112021 period and data are also indexed in Web of Science in December 2021.

 

Fig. 2 Graphic representation of the key features of this review article.

 

Fig. 3 Youngs Modulus of materials for fexible and wearable electronics.

 

Fig. 4 Schematic view of solar energy harvesters.

 

Fig. 5 a Construction and working principle of DSSC, b graphic representation of device and pictorial demonstration of fabricated device, growth mechanism of the novel hierarchical photoanode and performance optimization, ce optimization of base concentrations, optimization of H2SO4 for the NTA, comparison of nano-tree TiO2 and Ag deposited nano-tree TiO2. f Flowchart demonstration of synthesis of E-MWCNT conducting paste and fabrication of an E-MWCNT fabric electrode, g diagram of assembly proposed DSSC and conventional DSSC, and Essential features of an E-MWCNT coated polyester fabric electrode, h FESEM images of polyester fabric with hydrophobic surface fnish, Laccase suspended E-MWCNT and Gox suspended E-MWCNT, i electrical resistance of the E-MWCNT[1]coated fabric with the bending cycle, scotch Tape test performed on E-MWCNT coated fabric, clear surface of Scotch Tape and bending stability. j Schematic illustration of DSSC fabrication with GCF counter electrode, k efciency and PEC comparison with different thickness and bending radius counter electrodes. l Schematic representation of the structure of the inserted dye-sensitized solar cells (DSSCs) in the textile in planar view and cross-sectional view of the AAsection shown in (a) SEM images of the AAsection in (a), showing the cross-sectional view of the inserted DSSC in the textile, m JV features for thickness of layers and concentrations of precursors.

 

Fig. 6 a Detail confgurations of the large-area textile electrode. b Schematic images for the detail structure of the textile electrode Stitch able OPV with a textile electrode. c JV curves of the textile-based OPV. d Schematic side view of an organic solar cell including woven, transparent fabric electrode, active layers (PEDOT:PSS and P3HT/PCBM), and the aluminum back electrode. e Optical microscopy image of a woven fabric electrode before hole flling. A transmittance curve of a glass/ITO substrate is included for comparison (dash dotted, red line). f JV curves of fabric organic solar cells with bladed PEDOT: PSS layers of different thicknesses. g Isometric pictorial representation a step one functional layer deposition of textile solar cells fabrication by spray coating, the full schematic diagram of the spray-coated textile organic solar cells with each layer defned, h photograph image of the encapsulated spray-coated solar cells on textile, and Photograph image of the bending machine for testing the durability of the spray-coated solar cells on textiles, i J-V characteristics of OSCs fabricated on FTO (type1), bare glass substrate (type2) and fabric substrates (type3) using the spray coating method, j J-V curves of device type 3 after outer and inner bending cycling tests.

 

Fig. 7 a Cubic crystalline structure of perovskite solar cell, here the bulky cation A is typically the methylammonium ion (CH3NH3), the minor cation B is Pb, and the anion X is a halogen ion (typically I, but both Cl and Br), b typical structure of perovskite solar cell, c vacuum energy level for constituentsactive materials, d demonstration of electron transfer process in the perovskite solar cell and pictorial demonstration of EBIC process. e Photograph of textile substrate-based perovskite solar cell, f graphic interpretation of development process of perovskite solar cells through functionalized encapsulation, g device structure and cross-sectional SEM view of the fabricated device, h JV graph of the textile substrate-based perovskite solar cell with respect to immersing time in water.

 

Fig. 8 a Graphical demonstration of EDLCs charge storage mechanism and b various types of redox mechanism in PCs: (a) underpotential adsorption, (b) redox PCs, (c) intercalation PCs.

 

Fig. 9 a Typical structure of the supercapacitors, b Sandwich shape supercapacitors. c Planar shape supercapacitors. d Wire shape supercapacitors. e Fiber shape supercapacitors. f Cable shape supercapacitors.

 

Fig. 10 a Schematic representation of fabrication of the wire-based electrode, b pictorial representation of two parallel electrode confguration, c SEM image shows composite (graphite/ZnO) electrodes and gel-polymer electrolyte sandwiched between them, d bending stability tests. e Graphical fow diagram for MnO2/PANI-based electrode fabrications, f CF ration of carbon paper and pore size distribution, g bending stability test of the electrode.

 

Fig. 11 a Graphical representation of strawberry-alike FCC@PANI composite by vacuum penetration technique, b SEM images of FCC and FCC@PANI composite synthesized exploiting vacuum penetration technique, c electrochemical characterization of FCC, PANI@FCC composite cyclic voltammetry, and specifc capacitance comparison at different scan rate, and cyclic stability. d Pictorial representation of carbon fabric-based SCs, e schematic representation of fabrication of activated carbon fabric-based supercapacitors, f cyclic stability of device, g bending stability of the devices. h Schematic representation of electrochemical deposition of MnO2 characteristics with cyclic stability, i and j comparison of electrochemical characterization of electrodes at different time of deposition, k cyclic stability of the device.

 

Fig. 12 Pictorial demonstration of the growth of functional fibers by incorporating MXene into fibers from natural, regenerated, and synthetic sources that facilitate smart garments have potential of accumulating charge, harvesting energy, heating, sensing, and communicating with nearby electronics.

 

Fig. 13 a Synthesis of hybrid MXene-based fibers using wet spinning, comparison of electrochemical performance, cyclic stability comparison and Ragone plot comparison. b Electrospinning of MXene based fibers for supercapacitors electrodes, comparison of specifc capacitance of different composite fibers, Cyclic stability of SMX/C under 10 K repeated CV tests at a scan rate of 100 mV s 1.

 

Fig. 14 a Pictorial representation of the device in twisted confguration of carbon thread, b and c electrochemical performance comparison of pristine carbon fibers and polypyrrole functionalized carbon fibers at different scan rate. d schematic demonstration of asymmetric supercapacitors, e electrochemical performance in different potential windows and comparison of cyclic voltam[1]mograms on different scan rates, f charge and discharge comparison of the device at different potentials, g CV comparison at different scan rates.

 

Fig. 15 a Graphical representation of PANI/3D graphene electrode fabrication and then assembling in SCs device, b electrochemical characterization of the composite electrode CV, GCD, performance comparison. c Graphical representation of fabrication process and demonstration of the shape change woven CNTs on PDMS under strain condition via APCVD, synthesized CNTs are moderately inserted in PDMS, adhesion of CNTs with PDMS in stretched conditions along with electrochemical characterization. d Electrochemical characterization of both materials in 1 M H2SO4 at 0.005 V s 1, picture of pouch cell, stability in different voltage windows, specifc capacitance as function of current density, cyclic and bending stability in different bending radius.

 

Fig. 16 a Surface morphology of a rough cupper substrate. b Demonstration of multilayer silicon electrode fabrication. c Cyclic stability comparison of PPy and PPy-LiFePO4 deposited material, inset illustrates the discharge/charge curves of the 10th cycle. d Graphic diagram

of fexible gel Zn//CVO-18/RCNTs battery, demonstration of two fexible gel Zn//CVO-18/RCNTs batteries in series to light up a 1.5 V led bulb at different bending states and cyclic performance of the battery. e Diagram of synthesis of the SC-NF composites using electrospinning technique and cyclic performance of the battery. f Graphic illustration of the method of making fexible electrodes with SACNT flms working as lightweight and thin current collectors, Cycling performance of battery at (0.1C) and rate performances of the graphite-CNT and graphite-Cu electrodes. g Schematic illustration of 3-electrode setup for electrochemical performance of PANi grown on carbon fibers.

 

Fig. 17 Fiber-based wearable sensing devices.

 

Fig. 18 a Schematic graphic of a pixel confguration in the electroluminescent fabric. b Diagram and picture of the electroluminescent fabric displaying the design N.c Representation of the smart electroluminescent fabric being functionalized by connecting Bluetooth. d Graphics representation of the instantaneous extrusion process and the light-emitting fiber. e Real-time brain[1]interfaced camoufage of the SEF under green and blue illumination. f Pictorial demonstration of the woven OLED textile display comprising of orthogonally organized arrays of interconnectable OLED fibers and conductive fiber.

 

Fig. 19 ac FSEDs with different confgurations, twisted, coaxial and interlaced or woven. df Large-scale production techniques for deposition, spinning, and thermal drawing techniques.

 

Fig. 20 a Graphical representation of fiber-shaped lithium-ion battery. b Schematic of photovoltaic textile and a pictorial of an as developed photovoltaic textile mixed with colored wool wires with anode and cathode. c Pattern of conductive inks. df Conductive circuit on textile embedded in/on textile by different textile techniques. e Knitting. f Embroidery, fower pattern conductive polymers on textile substrate.

 

Fig. 21 a Graphical representation of fiber-shaped SCs in series, b relationship between voltage on charging time. c Pictorial demonstration of the structure of coaxially integrated photovoltaic device, along with cross-sectional views, d a standard photocharging and discharging of SC, relationship between voltage and storage efciency on the solar charging time during charging and discharging process.

 

Fig. 22 a and b Cross-sectional view of an electronically functional yarn, Photographs of prototype temperature-sensing yarn manufacturing process. c Electronic tracks on textile substrate using interposers. d and e Single-layered P-FCB system manufacturing process. f SEM image of electronic devices fabricated on a single microfiber. g Designed smart ECG garment system.

总结与展望

基于纤维的电子装置是实现可穿戴电子纺织品的关键因素。一些研究致力于开发具有能量收集、能量储存、电子和传感功能的光纤电子器件。目前的研究主要集中在确定 FBEDs的功能要求和活性材料的种类、设备设计、制造技术和设备的结构。科学界已经超越了导电纤维和基于纤维的电化学传感器,电介质门场效应晶体管已经从简单的开关被替换成复杂的逻辑门。FBDSSCsFBPSCs的发展为太阳能采集和向可穿戴设备提供这种电力开辟了新的潜在领域。该领域最近的趋势和发展导致了自力更生的电子织物系统的发展,即只用纺织纤维和织物来制造。不同性质的纤维基电子元件的可用性最终将有助于满足纤维基电子元件实际应用的各种需求,并将刺激完全集成的电子织物系统的进一步发展。

在过去,基于纤维和纺织品的电子装置被部署在各个领域,并被认为是现代电子学中最有吸引力的分支,已经吸引了研究人员和企业的极大关注。尽管在柔性电子器件领域已经取得了相当大的发展,但仍然只有少数基于纤维和纺织品的电子器件可以在市场上销售。到目前为止,市场上主要的纤维和纺织品电子装置是柔性纤维状的传感器。它们主要用于电子信号监测,但对于具有多种功能的全功能可穿戴设备来说,还需要更多的功能。基于纤维和纺织品的电子设备仍然存在许多挑战,而且技术上的限制也阻碍了它们的商业化。

1.性能差:纤维和织物基电子设备的主要限制之一是与同类设备,即刚性电子设备和薄膜设备相比,性能差。FBEDs 性能差的主要原因之一是它们的形状较薄,与平面电极相比,导电性较低。

2.大规模生产技术:为了实现规模经济和大规模生产柔性电子器件,大宗生产技术是至关重要的,目前很难满足要求和目标。柔性电子器件的连续制造对于在活性材料和纺织纤维之间获得稳定的界面结合是相当具有挑战性的。

3.生产成本高:任何制造业要想持续发展,最重要的是提高产品性能,同时降低生产成本由于材料和生产技术的高成本,高生产成本也是限制电子织物商业化和大规模生产的一个主要原因,在活性材料和纺织纤维之间有稳定的界面结合。

4.纺织品的储能:尽管各个研究小组都在实验室规模上开展工作,但在电子纺织品的工业规模生产方面仍有许多挑战。但与刚性的传统电池相比,纺织基超级电容器的储能能力仍然偏低。最重要的挑战是提高纺织基储能装置的储能能力。

5.将电子设备集成到纺织品中:FBEDs 最重要的应用是智能服装和电子纺织品。在这方面必须开发新的制造技术,将不同的 FBEDs 集成到纺织品中,使其具有更安全、更宽松的人/纺织品界面模型。此外,还需要一致的连接方法和综合轨道来完成电子织物的高度集成。

6.多功能性:由于物联网(lT)的新概念,电子纺织品是一种很有前途和令人着迷的技术很快就会成为日常生活的重要组成部分。因此,基于纺织品的电子设备应该具有多样化的适用性。然而,具有单一功能的电子纺织品限制了其应用。由于将不同的电子设备集成到纺织品中,制造具有多种功能的纺织品具有挑战性,这将是未来研究的重点。

7.技术的可靠性:目前还没有标准协议可以直接比较电子织物的可靠性没有标准的定义,但通常涉及到弯曲耐力、汗水、耐洗、拉伸、湿度和温度循环。

8.安全问题:伴随着上述的限制和挑战,设备及其应用的安全也是全面发展的可穿戴电子设

备和实际应用的一个主要问题。一些 FSEDs,如柔性电池,经常需要使用可燃和有毒的有机电解质,它们在弯曲过程中很容易受到短路引起的火焰和爆裂的风险。耐用和对环境无害的液体和凝胶聚合物电解质被视为 FBEDs中液体有机电解质的替代品,必须对其进行调整以提高电化学性能。

9.可洗性:电子纺织品和其他日常纺织服装一样,必须具有耐洗的特性,以维持一般的使用性。耐洗性被认为是实现电子纺织品的商业化生产和在市场上大规模供应的主要挑战和障碍之一。电子纺织品的耐洗性差,这限制了产品的可靠性和商业化。

10.标准评估系统:FBED 的主要问题之一是缺乏标准化的性能评估做法,这使得比较不同电子设备的性能具有挑战性。此外,报告的性能格式根据不同的单位以不同的形式进行交流。

11.纤维和纺织电子的应用:纤维和电子的使用需要不同学科的联合尝试,如化学家、纺织工程师、材料科学家、电气工程师和物理学家。这种多学科和跨学科的合作关系将提高纤维和纺织品在可穿戴电子设备中有效应用的可能性,并为提高人类生活水平提供大量前景。

12.可持续性制造:电子纺织品的目标是将电子设备无缝集成到纺织品中,使穿着者无法察觉电子电路。电子纺织品的成就可能对可持续性产生不利影响,因为它使电子纺织品的翻新或回收更具挑战性。一些专家指出了与大规模生产和大规模市场有关的风险,这将带来新的产品废物流,无论是电子纺织品还是电子设备,其回收都将是一个挑战。这使得可持续发展问题变得更加重要,对可持续发展的电子纺织品的生产也更具挑战性。

文献链接

Recent Advances and Challenges Toward Application of Fibers and Textiles in Integrated Photovoltaic Energy Storage Devices

https://doi.org/10.1007/s40820-022-01008-y

转自:i学术i科研”微信公众号

如有侵权,请联系本站删除!


  • 万维QQ投稿交流群    招募志愿者

    版权所有 Copyright@2009-2015豫ICP证合字09037080号

     纯自助论文投稿平台    E-mail:eshukan@163.com