2023年1月30日,四川农业大学玉米研究所唐祈林教授团队在International Journal of Molecular Sciences(2022年影响因子/JCR分区:6.208/Q1,生物学2区TOP期刊)在线发表了题为“QTL Mapping and a Transcriptome Integrative Analysis Uncover the Candidate Genes That Control the Cold Tolerance of Maize Introgression Lines at the Seedling Stage”的研究论文。该研究以创制的MTP-玉米渐渗系为材料,在苗期进行2℃低温胁迫,筛选出强耐冷渐渗系MIL-IB030,通过构建遗传群体,采用图位克隆与转录组联合分析方法,定位克隆了来源于近缘野生材料的苗期耐冷关键基因ZmHSP2和ZmPDIL2-2,并对两个候选基因的功能及调控机理进行了验证分析。
日益恶化的自然环境和频繁的极端天气使玉米生产面临越来越严重的非生物逆境胁迫减产。玉米对低温较为敏感,低温是影响玉米生产的一种重要非生物胁迫因子,玉米苗期遭受低温冷害导致幼苗长势不整齐、幼苗弱、甚至死亡绝收,生产上迫切需要培育强耐冷玉米新品种推广利用。可是,现存玉米种质资源耐冷性缺乏,其近缘野生材料大刍草和摩擦禾具有强耐冷有益基因。为了从玉米近缘野生材料中发掘强耐冷关键基因,唐祈林团队利用远缘杂交和多倍化等方法,创制出了聚合玉米(M)、四倍体多年生大刍草(P)和摩擦禾(T)三物种基因组于一体的玉米-大刍草-摩擦禾异源六倍体MTP(注:2n=20M+20P+34T=74,玉米标记为M、摩擦禾为T、大刍草为P)(Yan et al,2019;Iqbal et al,2019),以MTP为桥梁材料与玉米杂交、回交将大刍草和摩擦禾的耐冷遗传物质导入到玉米种质中,创制出系列MTP-玉米渐渗系群体材料。
作者对MTP-玉米渐渗系群体在苗期进行了2℃低温的耐冷性鉴定,筛选出耐受2℃低温的渐渗系MIL-IB030(图1)。用强耐冷渐渗系MIL-IB030与冷敏感渐渗系MIL-IB021组配F2:3群体,利用280个SSR多态性标记构建覆盖玉米10条染色体的分子遗传连锁图谱,图谱全长7449.51cM,标记间平均遗传距离26.60cM。采用复合区间作图法(CIM),在玉米的2号、3号、4号、6号和8号染色体上,定位到控制幼苗耐低温的9个主效QTL(图4),这为候选基因精细定位奠定了基础。除此之外,还对强耐冷渐渗系MIL-IB030和轮回亲本B73在苗期2℃低温胁迫后进行了转录组测序。通过图位克隆和转录组联合分析,预测出渐渗系MIL-IB030幼苗控制低温耐受性的两个关键耐冷候选基因Zm00001d037590和Zm00001d012321(图5)。以B73和MIL-IB030的cDNA为模板对候选基因的编码区进行扩增结果表明,Zm00001d037590和Zm00001d012321编码区域存在多处的非同义突变。以MTP、四倍体多年生大刍草、B73和MIL-IB030的cDNA为模板进行候选基因同源克隆对比分析,发现两个候选基因来自四倍体多年生大刍草,在自然进化中相对保守。RT-PCR和功能验证结果表明,两个候选基因是正向调控玉米耐冷性因子(图6)。
该研究成果证明,通过MTP桥梁材料可以把四倍体多年生大刍草和摩擦禾的耐冷重要抗逆性状导入到玉米种质中,为玉米耐冷性的遗传改良提供了重要的遗传材料和新基因资源。
Figure 1. Phenotypes and statistical comparison of cold-resistant MIL-IB030, cold-sensitive MIL-IB021, and recurrent parent B73 under normal and low-temperature stress conditions.
Note: (A) and (B) display plant phenotypes. (C) and (J) show statistical comparison of plant’s performance-related indicators, including plant height (PH), seedling fresh weight (SFW), seedling dry weight (SDW), root fresh weight (RFW), root dry weight (RDW), relative electrical conductivity (REC), root length (RL), and RL/PH, grown at 25 °C for 5 d and 2 °C for 5 d.
Figure 4. QTL mapping results of seedling-related traits in F2:3 populations (2 °C, 5 d).
Note: PH, SFW, SDW, REC, and RL represent plant height, seedling fresh weight, seedling dry weight, relative electrical conductivity, and root length, respectively.
Figure 5. The identified modules and regulatory networks of hub genes in this study.
Note: (A) Hierarchical clustering tree diagram of modules; (B) green module showing the regu-latory network of the 5 hub genes; (C) regulatory network of the 4 hub genes in the yellow module; (D) hierarchical clustering tree diagram of modules; (E) regulatory network of a hub gene in the yellow module; (F) hierarchical clustering tree diagram of modules; (G) regulatory network of two hub genes in the yellow module; (H) relative expression analysis of candidate genes.
Figure 6. (A) Subcellular localization of Zm00001d037590 protein. I and V were bright fields; II and VI were Zm00001d037590-GFP; III and VII were ER-mCherry marker and NLS-mCherry marker, respectively; IV was the green fluorescence of Zm00001d037590-GFP fu-sion protein, which coincides with the red fluorescence of ER-mCherry; VIII was green fluores-cence of Zm00001d037590-GFP fusion protein, which did not coincide with the red fluorescence of NLS-mCherry. (B) Growth status of wild-type B73, EMS single-base mutants, and MIL-IB030 before and after low-temperature stress. (C) – (F) REC of the leaves of wild-type B73, EMS sin-gle-base mutant, and MIL-IB030 after cold stress. (G)–(J) The relative expression of key candidate genes in wild-type B73, EMS single-base mutant, and MIL-IB030 under low-temperature stress.
Note: EMS4-13c465 (Zm00001d037590), EMS4-15d91a (Zm00001d012321), EMS4-0b1833 (Zm00001d012321), and EMS4-15d90b (Zm00001d012321).
作者和项目基金
四川农业大学玉米研究所何如钰博士和硕士毕业生杨涛为该论文共同第一作者,唐祈林教授为该论文的通讯作者。唐祈林团队成员郑军军、李晓锋博士、李影正博士、周阳博士、西南民大青藏高原研究所程明军博士、四川省农业科学院蚕业研究所严旭博士等也参与了该项工作。本研究得到国家自然科学基金(32272035)、四川省科技创新创业苗子工程重点项目(2023JDRC0117)等的支持。
论文链接:
https://doi.org/10.3390/ijms24032629
转自:“植物生物技术Pbj”微信公众号
如有侵权,请联系本站删除!