投稿问答最小化  关闭

万维书刊APP下载

Science:一维到三维的拓扑缩合实现新型超大孔分子筛的合成

2023/1/29 17:38:20  阅读:134 发布者:

第一作者:Jian Li(黎建),Zihao Rei Gao(高子豪),Qing-Fang Lin(林清芳)

通讯作者:Jian Li(黎建),Miguel A. CamblorFei-Jian Chen(陈飞剑),Jihong Yu(于吉红)

通讯单位:Stockholm University, Anhui ZEO New Material Technology Co. Ltd., Peking University, Instituto de Ciencia de Materiales de Madrid, Bengbu Medical College, Jilin University

沸石分子筛(zeolite)是一类结晶性微孔硅铝酸盐,具有孔径分布均一、孔道结构规整、活性中心可调、比表面积大、稳定性好等特性,作为催化剂、吸附剂、离子交换剂在传统化工、环境领域以及新兴储能、光电器件、生物医学、燃料电池、生物质转化等领域有着重要的应用,尤其是作为催化剂在石油炼制、石油化工、煤化工、日用化工等方面有着极其重要的应用。例如,上世纪90年代成功开发的超稳Y大孔分子筛,由于具有较大的孔道结构,将其应用在原油裂解过程引发了“炼油工业技术革命”,目前工业上急需开发出具有更大孔道系统的三维稳定超大孔分子筛材料。由于分子筛晶化机理不明晰,水热合成难以实现定向控制,在人工合成沸石分子筛80余年的研究历史中,三维稳定超大孔硅酸盐分子筛的合成一直是分子筛领域内孜孜以求的目标,然而数十年来鲜有突破,这也是当前分子筛合成领域所面临的一项极大挑战。分子筛的孔径决定了能在其孔道中扩散和反应的分子尺寸。虽然小的孔道能够促进反应和吸附选择性,但对于其他应用,如处理石油大分子或有机污染物的吸附和反应,则需要具有较大孔隙的超大孔、具有高稳定性的分子筛。合成新型拓扑结构的分子筛是分子筛研究领域的重要内容,大部分分子筛是通过水热或溶剂热直接合成而得到。少数分子筛则可以通过煅烧其二维层状前驱体获得,这种煅烧是不改变层结构的拓扑缩合过程。层状前驱体可以直接合成,也可以通过ADORassembly-disassembly-organization-reassembly,组装-分解-重整-再组装)过程分解某些含锗分子筛结构得到。虽然层状前驱体为分子筛合成带来了新的可能,但所合成的分子筛主要是小孔分子筛结构类型。值得注意的是,几十年广泛且系统的分子筛合成研究尚未发现可以从一维(1D)链状硅酸盐分子筛前驱体向三维(3D)分子筛的拓扑结构转化。

近日,斯德哥尔摩大学/北京大学的黎建博士、西班牙马德里材料研究所Miguel A. Camblor教授、吉林大学陈飞剑教授和于吉红院士等报道了一例新型的三维稳定超大孔硅酸盐分子筛材料ZEO-3。该材料由陈飞剑教授和于吉红院士课题组所开发,他们首先合成了一种新颖的1D链状硅酸盐材料ZEO-2ZEO-2经高温煅烧直接发生拓扑缩合生成了3D稳定的全连接超大孔分子筛ZEO-3。黎建博士通过使用先进的连续倾转三维电子衍射(cRED)技术结合X-射线粉末衍射拟合精修方法最终确定了这两种材料的精确结构。ZEO-3具有3D十六元环(16MR)和十四元环(14MR)穿插超大孔道结构(图1),是首例具有不以F-离子参与合成的纯硅双四元环(D4R)单元的纯硅分子筛。这种从1D链状硅酸盐ZEO-23D分子筛ZEO-3的转化是一种全新的拓扑缩合路径,它的发现为深入研究分子筛合成与结构的关系提供了新的理解。相关研究成果于120日在线发表于国际顶级学术刊物Science 杂志。值得注意的是,相关研究团队2021年还曾报道首例具有多维度超大孔道结构且稳定的硅铝酸盐分子筛ZEO-1Science 2021, 374, 1605,点击阅读详细)。ZEO-1已被国际分子筛结构委员会授予结构代码JZO (Jilin University-ZEO-1)ZEO-3的结构代码也正在申请中。

1. ZEO-3的超大孔道系统。

来源:Science

链状硅酸盐前驱体的合成与结构

1D硅酸盐前驱体ZEO-2是以三环己基甲基鏻(tricyclohexylmethylphosphoniumtCyMP)为有机模板剂合成的针状晶体,其复杂的链状结构是通过连续倾转三维电子衍射(cRED)技术确定的。ZEO-2具有C2/c空间群,结构中的硅酸盐链沿[001]方向排列,每条链在ab面上被四条相同的链包围(图2AC),而在链的边缘存在由四个硅羟基(Si-OH)或硅氧负离子(Si-O-)基团形成的单四元环(S4R),链间的S4R稍有错开但沿[110][1-10]方向两两配对形成了大量氢键以稳定ZEO-2的结构(图2B),而tCyMP阳离子则位于链间空隙。ZEO-2的高分辨29Si固体核磁谱揭示了四种Q3和七种Q4Si位点(图2D),这与其晶体结构数据一致。

2. ZEO-2的结构:(A)沿[001]方向的链;(B)链间两个S4R之间的氢键;(Cab面上的链排布;(D29Si固体核磁谱。

来源:Science

1D链向3D超大孔分子筛的拓扑结构转化

高温煅烧ZEO-2,不仅可以去除tCyMP,氢键作用的两个S4R之间还会脱水缩合形成Si-O-Si桥及D4R(图3A),这也是首次在不含F-离子的纯硅分子筛体系中得到D4R。由此,1DZEO-2前驱体拓扑转化为3D纯硅分子筛ZEO-3,针状形貌得到保持,而tCyMP煅烧残留的磷可以通过高温水洗或H2还原而除去。ZEO-3的结构也是通过cRED技术解析的,它保持了ZEO-2的对称性和链的拓扑结构,但相比ZEO-2,其晶胞ab轴收缩了17%c轴膨胀了仅0.4%。为了获得更准确的晶胞和原子位置(包括ZEO-2中无序的tCyMP),研究人员对ZEO-2ZEO-3开展了同步辐射粉末X-射线衍射的结构精修。ZEO-3是全连接的超大孔分子筛,具有首例3D 16×14×14 MR的孔道系统(图3BC),为稳定的超大孔全连接纯硅分子筛之最,其29Si固体核磁谱进一步证明了1D3D的拓扑结构转化,即仅有Q4Si位点(图3D)。

3. ZEO-3的结构:(AD4R单元;(B)沿[110][1-10]方向的14MR孔道;(C)沿[001]方向的16MR孔道;(D29Si固体核磁谱。

来源:Science

球差电镜再次证实了ZEO-2ZEO-3的结构(图4)。在ZEO-2链间还出现了对应于tCyMP的微弱信号,而该位置在拓扑结构转化后将成为ZEO-314MR孔道,而ZEO-316MR14MR孔道清晰可见,此外还观察到了两种材料中较小的456MR结构。

4. ZEO-2ZEO-3的球差电镜照片:(A)沿[110]带轴的ZEO-2;(B)沿[110]带轴的ZEO-3;(C)沿[001]带轴的ZEO-3

来源:Science

拓扑分析与Beta分子筛的σ结构拓展

拓扑结构分析表明,ZEO-2的链是由mtwbeamor的复合构筑单元(composite building unitCBU)形成的,它们可以组合为一个更大的结构单元,而ZEO-3在拓扑上仅比ZEO-2多出d4r(对应D4R)的CBU(图5A)。大结构单元按照+90°与-90°交替的旋转连接,可以构成ZEO-2的链(图5B),该链也被发现于Beta分子筛的多型体BBEB,非公认代码)中,即ZEO-2的链通过共享S4R(而非ZEO-3中的D4R)的连接可形成BEB的结构(图5F);若大结构单元总是按照+90°或总是按照-90°的旋转连接,将产生一个手性链(图5C),该链通过共享S4R的连接方式则能形成Beta分子筛的手性多型体ABEA,空间群为P4122P4322)(图5G),该链由此可称为bea链。通过d4r的连接,可以实现1D ZEO-2链向3D ZEO-3分子筛的拓扑转变(图5D);类似地,bea链通过d4r的连接将导向一个手性的、具有3D 16×14×14 MR超大孔道结构的假想分子筛σ-BEA(空间群同样为P4122P4322)(图5E)。这些发现表明, ZEO-3Beta分子筛在结构上高度关联,ZEO-3和σ-BEA分别对应BEBBEA分子筛的σ结构拓展。理论研究还表明,ZEO-3和σ-BEA的能量都接近已知分子筛的能量-密度关系,ZEO-3的合成也预示着假想σ-BEA是可行的。

5. ZEO-2ZEO-3Beta分子筛的拓扑分析:(A)单独的CBU及由其构筑的大结构单元;(BZEO-2的链;(Cbea链;(DZEO-3;(E)σ-BEA;(FBEB;(GBEA

来源:Science

ZEO-3分子筛的性质

三维超大孔道结构导致ZEO-3具有非常低的骨架密度(FD),为12.76个四面体原子(T/1000 Å3,这低于其他稳定的、低骨架密度的硅(铝)酸盐分子筛(包括FAUEMT*BEABECISVIWV,以及最近报道的PST-2PST-32ZEO-1)。事实上,ZEO-3打破了分子筛骨架密度和最小元环尺寸间已观测到的趋势:对于具有平均4.25 MR最小元环的分子筛,其预测的最小FD13,这比ZEO-3更大;与含有45 MR的全连接结构分子筛ISVIWV相比,ZEO-3FD也比它们15FD更小。ZEO-3的理论密度接近水,仅为1.27 g/cm3,不到石英(2.65 g/cm3)密度的一半。ZEO-3N2Ar吸附测试中展现了超高的比表面积,分别为9891032 m2/gAr吸附实验得到的平均孔径为10.88.8 Å,这与晶体学数据匹配得很好。这些结果验证了ZEO-3非常空旷的骨架结构。

ZEO-3超大的孔径允许大分子的扩散和吸附,可用于挥发性有机物(VOCs)的处理。在静态吸附实验中,ZEO-3对甲苯和水蒸气的饱和吸附量均比孔径更小的Beta分子筛更高(图6A);在动态穿透实验中,ZEO-3对纯甲苯和甲苯与水蒸气混合物这两种VOCs的穿透时间均长于Beta分子筛(图6B),表明更高的动态吸附量;这两种VOCsZEO-3孔道中的脱附温度也低于Beta分子筛(图6C)。此外,ZEO-3对上述VOCs的吸附稳定性也要优于商业的UiO-66 MOFs材料,经过数次吸脱附再生循环后ZEO-3VOCs的吸附量几无衰减,表现性能优异。使用甲苯与水蒸气的混合物更具有工业应用价值,相比较于传统使用的分子筛材料,ZEO-3具有更大的吸附容量,以及其高稳定性也保证了其潜在商业应用价值。

6. ZEO-3处理VOCs的性能:(A)静态吸附;(B)动态吸附;(C)脱附曲线。

来源:Science

小结

该工作报道了首例具有全连接超大孔道稳定结构的硅酸盐分子筛ZEO-3,通过1D链状硅酸盐ZEO-2的拓扑缩合而得。ZEO-3结构独特,与Beta分子筛有一定的拓扑相似性,纯硅超大孔结构使其展现出优异的VOCs处理性能。ZEO-3的结构特征,尤其是无F-的纯硅D4R和低于预期的FD,明显不同于直接合成的已知分子筛。这种一维到三维的拓扑转变过程预示着一种新的分子筛晶化机制,对传统分子筛晶化机理提出了挑战,对其进行深入研究将对分子筛新结构的合成拓展及晶化机理的进一步阐明都具有重要的理论和现实意义。

该成果合作团队还包括中国科学院城市环境研究所邓华副研究员和贺泓院士、麻省大学阿默斯特分校范炜教授等,该工作得到了国家自然科学基金“分子筛催化材料的分子工程学”基础科学中心项目(22288101)、重点研发计划(2022YFA15036002021YFA1501202)、111计划(B17020)等项目支持。

转自:“闪思科研空间”微信公众号

如有侵权,请联系本站删除!


  • 万维QQ投稿交流群    招募志愿者

    版权所有 Copyright@2009-2015豫ICP证合字09037080号

     纯自助论文投稿平台    E-mail:eshukan@163.com