拓扑量子材料最核心的问题就是定性的确定其拓扑性。在过去的几年中,人们完成了大部分非磁性量子材料的拓扑性表征。这得益于对拓扑能带理论和对称性连接方式的深入理解,及拓扑阻断(topological obstruction)概念的提出。自然界中同样存在着丰富的磁性材料,对这些材料的拓扑性表征还需要额外知道它们的磁性结构信息。这往往需要借助于复杂实验手段,并需要高质量的单晶样品。
Fig. 1 Summary of magnetic and topological diagnosis of 1049 TMCs.
因此准确的磁性结构信息通常较难获得,这阻碍了对此类材料的进一步拓扑表征。理论上对于给定的磁性材料,可以通过尽可能多的历遍可能磁结构,比较它们的总能量确定可能的磁性基态。这种方案可以为磁性材料的可能磁结构给出理论建议,为高通量分类磁性拓扑量子材料提供一种可行的尝试。
Fig. 2 Magnetic Dirac nodal loop semimetal mp-20759 SrMnSn.
来自上海科技大学李刚研究员团队及其合作者提出了一种高效的理论计算方案,可利用第一性原理方法和拓扑表征理论,从头高通量预测和表征共线型磁性拓扑量子材料。他们在实际计算中发现了多个可能的优秀候选材料。该方案结合两种高效的高通量计算框架,仅依赖于材料的空间结构信息,根据指定的磁性原子,依据结构对称性和分层信息,自动生成若干可能的共线型磁结构,进一步通过比较总能量确定可能的磁性基态。
Fig. 3 Smith-index semimetals mp-1238796 Rb(CrS2)2 with stable invariant η4I = 3.
通过对磁性基态具体磁结构的自动化分析,获得该结构对应的磁性空间群,并利用拓扑量子化学方法计算得到占据态的不可约分解和拓扑阻断信息,从而实现对未知磁结构的磁性材料的自动化拓扑表征。该方法并不是一个严格的计算表征方案,该研究在实验上缺少足够的磁性结构信息情况下,可以从理论计算的角度对人们感兴趣的磁性拓扑量子分类提供了一定的参考信息。
Fig. 4 Axion insulator mp-11181 Cs(MnP)2 with stable invariant η4I = 2.
在发展出更准确、更行之有效的大规模表征磁性拓扑量子材料的理论方法前,可以用作者的方法对未知磁结构的拓扑量子材料提供一定的磁性拓扑分类参考,其正确性既可以通过对磁结构的测量,也可以通过对磁性能带结构的测量加以判断和修正。该工作与普林斯顿大学的徐远峰博士(现已加入浙江大学)和牛津大学的陈宇林教授合作完成。该文近期发表于npj Computational Materials 8: 261 (2022)。
High-throughput first-principle prediction of collinear magnetic topological materials
Yunlong Su, Jiayu Hu, Xiaochan Cai, Wujun Shi, Yunyouyou Xia, Yuanfeng Xu, Xuguang Xu, Yulin Chen & Gang Li
The success of topological band theory and symmetry-based topological classification significantly advances our understanding of the Berry phase. Based on the critical concept of topological obstruction, efficient theoretical frameworks, including topological quantum chemistry and symmetry indicator theory, were developed, making a massive characterization of real materials possible. However, the classification of magnetic materials often involves the complexity of their unknown magnetic structures, which are often hard to know from experiments, thus, hindering the topological classification. In this paper, we design a high-throughput workflow to classify magnetic topological materials by automating the search for collinear magnetic structures and the characterization of their topological natures. We computed 1049 chosen transition-metal compounds (TMCs) without oxygen and identified 64 topological insulators and 53 semimetals, which become 73 and 26 when U correction is further considered. Due to the lack of magnetic structure information from experiments, our high-throughput predictions provide insightful reference results and make the step toward a complete diagnosis of magnetic topological materials.
转自:“知社学术圈”微信公众号
如有侵权,请联系本站删除!