研究背景
随着物联网 (loTs)的快速发展,具有明显低检测限 (LOD)、快速响应/恢复速度以及出色的长期稳定性和可逆性的高灵敏度和高选择性的气体传感器在智慧城市、智慧工厂,甚至是智慧医疗方面的需求越来越大。一方面,超灵敏的气体传感器可以监测甚至是微量的危险、有毒或爆炸性气体,如挥发性有机化合物 (VOC)、H2S、NH3、HCHO、NO2、CH4和H2,保护人类健康免受环境污染物或泄漏事故的影响。另一方面,具有精确选择性和可靠性的气体传感器在与我们日常生活密切相关的各种新兴领域显示出巨大的应用潜力,如食品新鲜度监测,醉酒驾驶检查,以及通过人体呼气分析进行无创疾病诊断。
在包括电化学、光学、质量敏感、热电和磁气体传感器在内的各种类型的气体传感器中,化学电阻式传感器因其具有灵敏度高、体积小、成本低、易于操作,甚至是基于微机电系统(MEMS)的传感器的高度集成等独特优势,吸引了巨大的研究热情。一般来说,化学电阻式气体传感器主要由高敏感材料、一对传感电极和一对加热电极组成提供足够高的工作温度以激活传感材料。由于敏感材料被认为是整合式气体传感器最关键的组成部分,许多人都在努力开发令人满意的气体传感材料。自从1962年Seivama发明了世界上第一个基于氧化物的气体传感器以来,纳米结构的半导体金属氧化物 (SMO)凭借其高比表面积、丰富的活性吸附点、卓越的电气性能和低成本,被认为是有前景的气体传感材料。
然而,单一的基于SMO的纳米材料的气体传感器存在响应低、选择性差和工作温度过高等问题,不能满足实际应用的要求。因此,各种方法,主要包括构建异质结构,修饰催化剂,设计电荷转移混合体,以及引入分子探测和筛分效应,已被广泛探索以改善气体传感性能。在所有这些策略中,贵金属修具有协同效应的混合纳米复合材料,并为气体化学吸附引入高活性催化剂,正好为气体传感性能的提高铺设了一条新的非凡之路,并引起了广泛的研究关注。最近,广泛使用的贵金属主要包括Pt、Pd、Au、Ag、Ru、Rh及其双金属复合材料。提高气体传感性能的相关机制包括构建金属-半导体接触的电子敏化效应和溢出效应的化学敏化效应。因此,协同效应不仅促进了贵金属修饰的 SMO 和目标气体之间的快速互动,而且还通过降低气体传感的激活能有效地降低了工作温度。
研究成果
具有明显低检测限的高灵敏度气体传感器对包括实时环境监测、呼气诊断和食品新鲜度分析在内的各种实际应用领域具有吸引力。在各种化学传感材料中,贵金属修饰的半导体金属氧化物(SMO)凭借贵金属独特的电子和催化特性,目前已经引起了广泛的关注。本综述着重介绍了不同的贵金属修饰的 SMO 的设计和应用的研究进展,这些 SMO 具有不同的纳米结构(如纳米颗粒、纳米线、纳米棒、纳米片、纳米花和微球),用于高性能气体传感器,具有更高的响应、更快的响应/恢复速度、更低的工作温度和超低的检测限。关键课题包括 Pt、Pd、Au、其他贵金属 (如Ag、Ru 和 Rh),以及含有 ZnO、SnO2、WO3、其他 SMO (如In2O3、Fe2O3和Cu)和异质结构SMO 的双金属修饰 SMOS。除了传统装置,还讨论了创新应用,如光辅助室温气体传感器和机械灵活的智能可穿戴设备。此外,还详细总结了贵金属修饰导致传感性能提高的相关机制,包括电子敏化效应和化学敏化效应。最后,提出了基于贵金属修饰的 SMO 化学反应气体传感器的主要挑战和未来展望。相关研究以“Advances in Noble Metal‑Decorated Metal Oxide Nanomaterials for Chemiresistive Gas Sensors: Overview”为题发表在Nano-Micro Letters期刊上。复旦大学卢红亮教授为通讯作者。
综述要点
1. 总结了贵金属修饰(NM-D) 半导电金属氧化物 (SMO) 气体传感器的最新进展。
2. 仔细讨论了与贵金属修饰有关的气体感应机制。
3. 分析了NM-D SMO气体传感器的发展所面临的关键性挑战。
图文导读
Fig. 1 Process of electronic olfactory sensing realization for important applications based on gas sensor arrays.
Fig. 2 Overview schematic representation of various noble metal decorated SMOs for gas sensors.
Fig. 3 a Schematic energy band diagram of noble metal decorated n-SMO. b Schematic illustration of the chemical sensitization of noble metal decorated n-SMO. c Schematic energy band diagram of bimetal decorated n-SMO. d Schematic illustration of the chemical sensitization of bimetal decorated n-SMO.
Fig. 4 a Calculated, model estimates, and experimental results of the variation in the oxygen adsorption energy of a series of 4d transition metals, which exhibited a good correlation with εd. b Calculated and model estimates of the variation in the adsorption energy of a series of 4d transition metals to CO and NO.
Fig. 5 a Response of the pristine and Pt-decorated ZnO sensors towards different concentrations varying from 20 to 80 ppb. b Response and recovery behavior of 0.50 at% Pt-decorated ZnO to 50 ppm CO at 180 °C. c Mechanism of Pt-decorated ZnO sensor toward NH3. d Responses of pure ZnO, Pt-commercial ZnO, and Pt-decorated ZnO microspheres-based sensors to various gases. e Fabrication process of Pt@ZnO polyhedrons. f SEM image of Pt@ZnO polyhedrons. g Responses of 3DIO ZnO and 3DIO Pt-decorated ZnO@ZIF-8 based sensors to simulated H2S abnormal/healthy breath samples.
Fig. 6 a Back scattered electrons (BSE) images of 20 wt% Pt-modified thin-wall assembled SnO2 fibers. b Synthesis of pore loaded SnO2 nanotubes decorated by Pt NPs. c Response versus time curves of the SnO2-PVP, 0.1% Pt-SnO2, 0.3% Pt-SnO2, and 0.5% Pt-SnO2 based[1]sensors to 100 ppb~5 ppm H2S. d Selectivity behaviors of SnO2-PVP, 0.1% Pt-SnO2, 0.3% Pt-SnO2, and 0.5% Pt-SnO2 based-sensors. e Response of pure SnO2, 0.5 wt% Pt-decorated SnO2, 1 wt% Pt-decorated SnO2, and 2 wt% Pt-decorated SnO2 sensors towards various isopropanol concentrations at 220 °C. f AFM characterization of Pt-SnO2 thin films. g Response and recovery behaviors of SnO2and Pt-decorated SnO2 films sensor to 10 ppm TEA at 200 °C. h Schematic of the well-designed filter-sensor system, exhibiting the adsorption of hydrophilic compounds on the activated alumina filter with no retention of hydrophobic isoprene. i Dynamic response curves of a Pt-SnO2 NPs sensor to 500 ppb isoprene, acetone, ethanol, methanol, and ammonia without and with an activated alumina filter at 90% RH.
Fig. 7 a Response of different Pt decoration times decorated WO3 nanorods sensors toward 100–3000 ppm of H2 at 200 °C. b SEM image of meso- and macroporous Pt-decorated WO3 micro[1]belts. c PCA result of the sensor array. d Synthesis route of Pt-decorated macroporous WO3 nanofibers. e PCA result of the healthy bodies and halitosis patients through the human exhaled breath. f Fabrication process of Pt loaded ordered mesoporous WO3 composites.
Fig. 8 a Synthesis process of pristine In2O3 porous nanofibers and Pt-decorated In2O3 porous nanofibers. b Fabrication process for Pt-In2O3 nanowires. c Schematic diagram of a portable device including the Pt[1]decorated In2O3 nanowire sensor. d TEM image of Pt-decorated NiO nanotubes. e Response curves of the pristine NiO, 0.3% Pt-decorated NiO, and 0.7% Pt-decorated NiO nanotube gas sensors towards different concentration of ethanol varying from 1 to 100 ppm at 200 °C; the inset image displayed linear relation of the response and the gas concentration. f Resistance changes of Pt-Fe2O3 to acetone under different conditions. g Responses of pristine CuO, Pt-CuO, Pd-CuO, and Au-CuO-based sensors to 100 ppb HCHO at 225 °C.
Fig. 9 a Schematic illustrations of the fabrication process of the Pt-decorated SnO2/ZnO nanowires. b Responses of the Pt-decorated SnO2/ZnO nanowires, SnO2/ZnO nanowires, pristine SnO2 nanowires, and pristine ZnO nanowires-based sensor to toluene. c Synthesis scheme of Pt-decorated SnO2-ZnO core–shell nanosheets in-situ on MEMS. d Selectivity of pristine SnO2, SnO2-α-Fe2O3, and Pt-decorated SnO2-α-Fe2O3 sensors to various gases (10 ppm) at 206 °C. e Energy band diagram of Pt-SnO2-α-Fe2O3. f Response/recovery speed of Pt-decorated ZnO/In2O3 sensor towards 100 ppm acetone at 300 °C, the inset is the five periods of response and recovery curves.
Fig. 10 a Transient response of the sensors to 0.1% CH4 based on the ZnO, OV ZnO, ZnO/Pd and OV ZnO/Pd composites under 590 nm light illumination. b Selectivity of the sensors based on pristine (@150 °C) and Pd-ZnO nanowires (@100 °C) to different gases. c Schematic diagram of the Pd-ZnO nanowires-based nanosensor device. d Transient response of the sensors based on single Pd-ZnO nanowire with different diameters. e Measurement system for the detection of dissolved H2 in transformer oil. f Optical images of the flexible RT H2 sensor based on Pd/ZnO nanorods under different bending angles. g Selectivity of the sensors based on ultrathin agaric-like Pd-decorated ZnO nanosheets with the background of Pd/ZnO SEM image. h SEM image of porous coral-like Pd-decorated ZnO nanosheets. i Selectivity performance and BET surface area of the Pd@ZnO core–shell NPs.
Fig. 11 a Schematic illustration of the fabrication process for carbonized Pd-SnO2 nanofiber. b The response and selectivity of the sensors based on pristine SnO2 nanofiber, pristine Pd-SnO2 nanofiber, carbonized Pd-SnO2 nanofiber. c Schematic illustration of the fabrication process for Pd-loaded SnO2 nanofiber mats. d Schematic illustration of the fabrication process for Pd-embedded SnO2 NPs. e The response to 0–1000 ppb acetone under different humidity conditions from Pd-embedded SnO2 NPs sensors before and after leaching. f Schematic diagram of gas sensing mechanism for pristine SnO2 and Pd-decorated SnO2 in humid condition. g Handheld device for indoor benzene sensing and envisioned chemical mapping application. h Images of the handheld methanol sensor comprised of a fame-made Pd-SnO2 NPs microsensor and an upstream separation column filled with Tenax TA particles. i Single and mixed dynamic response curves of the Pd-SnO2 NPs sensor connected without (left) and with (right) the separation column.
总结与展望
在这篇综述中,作者系统地总结了各种基于贵金属修饰的SMO化学反应气体传感器的最新进展。集中在对不同种类的贵金属的比较上,包括Au,Pt,Pd,Ag,Rh,Ru和双金属。具体来说,本综述全面涵盖了各种 SMO 材料,包括n型SMO(ZnO、SnO2、WO3、In2O3、Fe2O3、TiO2、MoO3、CdO、CeO2、V2O5等)、p型SMO (CuO、NiO、Co3O4、Ga2O3 等)及其异质结构的制备工艺、气体传感性能和实际应用,以及贵金属修饰。同时,贵金属修饰引起的性能改善的一般传感机制,包括电子敏化效应和化学敏化效应也得到了具体解释和详细讨论。此外,还全面分析和讨论了具有低功耗和良好的长期稳定性的高灵敏度和选择性气体传感器的挑战和前景。这篇综述对基于贵金属修饰的SMO气体传感器的设计、制造和开发具有一定的参考价值。
总的来说,贵金属修饰的 SMO 具有易于合成、提高反应值、快速反应/恢复、神话般的选择性和出色的稳定性等优点。主要结论总结如下:
(1)贵金属修饰可以通过改变 SMO 材料的表面纳米结构和形态,增强表面晶格氧的活性,产生更多的氧空位,提高气体分子的吸附能力,从而有效提高基于SMO的气体传感器的气体传感性能。一方面,具有优良催化性能的贵金属有助于降低气体分子与吸附氧的反应活化能,从而加速氧的吸附和解吸的动态平衡。另一方面,当一些具有高功函数的贵金属与 SMO紧密接触时,预计会形成肖特基势垒,这将引起SMO 中电子分布和能带结构的改变,进而导致电子耗竭层厚度的增加。更广泛地说,贵金属在 SMO上的修饰并不限于气体传感器它也可以扩展到其他功能应用,包括催化、二氧化碳还原等。
(2) 贵金属修饰的SMO的形貌设计和控制已经成熟。制备技术的发展为贵金属修饰的进步提供了基础。水热法、紫外还原法、ALD 法、电化学沉积法、电纺法、沉淀法、磁溅射法火焰喷射热解法等具有独特特点的制备方法已被广泛用于合成各种贵金属修饰的SMO。
(3) 由于协同效应,双金属修饰表现出比单一贵金属修饰好得多的气体传感性能。此外,双金属纳米粒子的电子结构和几何构型可以通过控制双金属的组成比例来调控,以达到最佳的传感性能。
(4) 不同的贵金属对检测不同的某些气体具有特殊性。例如,修饰的 SMO由于其独特的可逆产物 PdHx而对H2有特别高的选择性,而Ag 修饰的SMO 对醇和HCHO 更敏感如报告所述。此外,在基于贵金属修饰的 SMO 气体传感器的上游引入精心设计的吸附、尺寸选择或催化过滤器,已被证明可以显著提高选择性,这对各种实际应用大有裨益,特别是在高湿度的呼出气体分析中。
(5) 开发了多种有效的方法,如光照射和形态学创新,以改善贵金属的催化活化,进一步提高基于贵金属修饰的SMO 气体传感器的气体传感性能,如降低工作温度甚至到 RT,加快响应/恢复速度,降低检测限甚至到 ppb 级。
由于新兴功能材料、新型纳米结构以及先进的制造工艺的引入,基于高性能贵金属修饰的纳米材料气体传感器已经比较容易实现。为了进一步发展,开发具有优良一致性和长期稳定性的材料和器件对未来的实际应用变得更加关键。此外,实现长期稳定的贵金属修饰的基于SMO的气体传感器阵列,加上人工智能(A)时代的到来,应该可以在未来实现现实生活中的电子嗅觉感应。
文献链接
Advances in Noble Metal‑Decorated Metal Oxide Nanomaterials for Chemiresistive Gas Sensors: Overview
https://doi.org/10.1007/s40820-023-01047-z
转自:“i学术i科研”微信公众号
如有侵权,请联系本站删除!