Npj Comput. Mater.: 材料角度信息—图神经网络
2023/2/6 9:49:00 阅读:97 发布者:
在材料科学中,图神经网络(GNN)可以作为研究材料和分子系统性质的替代模型,因而收到广泛欢迎欢迎。GNN对于具有节点的结构以及与边缘相关联的化学键具有直观的、物理上可解释的图形编码。然而,除了原子和键特征之外,对更精细的结构信息(比如键角、二面角)进行编码,有助于准确预测某些特性,在很多情况下这甚至是必需的,比如捕获电子结构、化学键的杂化等等。同样,为了开发能精确预测能量的机器学习势,通常需要在描述符中包含三体(键角)和高阶项,这对材料的光谱预测至关重要。不幸的是,传统用于GNN的编码不包括角度信息。
来自美国劳伦斯·利物浦国家实验室应用科学计算中心的Tim Hsu等人,扩展了之前的ALIGNN(原子线图神经网络)编码,包括了键角,并把二面角纳入了考虑,提出了ALIGNN-d编码。该工作基于ALIGNN-d编码及其他有竞争力的编码,训练了GNN模型,并预测了Cu(II)水配合物的红外吸收谱。研究发现,ALIGNN-d编码不仅给出了更完全的结构信息,还具有更好的解释性。此外,作者利用第一性原理分子动力学模拟,探讨了结构局部扭曲在GNN编码和其产生的光谱特征中的作用。工作证明:(1) ALIGNN-d是一个紧凑的编码,它具有与最大连接图(所有成对键都被编码)相同的预测精度,且效率更高;(2) 由于键角和二面角的显性图形表示,ALIGNN-d方法具有直观的模型可解释性。本文所给出的基于ALIGNN-d编码的研究框架可以加速材料设计,针对目标光学特性控制光吸收的变化从而筛选金属配合物,还有助于分析复杂、无序材料中的其他光谱响应。本文提出的更精细的解释方法有助于阐明结构特点或化学特征对于物理性质的贡献,从而为更广泛的应用打开大门。
该文近期发表于npj Computational Materials 8:1518(2022),英文标题与摘要如下,点击左下角“阅读原文”可以自由获取论文PDF。
Efficient and interpretable graph network representation for angle-dependent properties applied to optical spectroscopy
Tim Hsu, Tuan Anh Pham, Nathan Keilbart, Stephen Weitzner, James Chapman, Penghao Xiao, S. Roger Qiu, Xiao Chen & Brandon C. Wood
Graph neural networks are attractive for learning properties of atomic structures thanks to their intuitive graph encoding of atoms and bonds. However, conventional encoding does not include angular information, which is critical for describing atomic arrangements in disordered systems. In this work, we extend the recently proposed ALIGNN (Atomistic Line Graph Neural Network) encoding, which incorporates bond angles, to also include dihedral angles (ALIGNN-d). This simple extension leads to a memory-efficient graph representation that captures the complete geometry of atomic structures. ALIGNN-d is applied to predict the infrared optical response of dynamically disordered Cu(II) aqua complexes, leveraging the intrinsic interpretability to elucidate the relative contributions of individual structural components. Bond and dihedral angles are found to be critical contributors to the fine structure of the absorption response, with distortions that represent transitions between more common geometries exhibiting the strongest absorption intensity. Future directions for further development of ALIGNN-d are discussed.
转自:“知社学术圈”微信公众号
如有侵权,请联系本站删除!